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We study a process of anomalous diffusion of a variable resulting from the fluc- 
tuations of a dichotomous velocity whose two states, in the absence of perturba- 
tion, have the same waiting time distribution ~b(t). In the long-time limit the 
function ~(t) is proportional to t - "  with 2 < p  < 3. Previously this distribution 
along with the constraint on it proved to be a dynamical realization of an or- 
stable L6vy process with t x = l t - I .  Here we study the response of this 
anomalous diffusion process to a perturbation which has the effect of truncating 
the inverse power law of one of the two states of the velocity for times t > l/e, 
where e is proportional to the intensity of the weak perturbation. We show that 
the resulting transport process is characterized by a succession of two regimes: 
the first still satisfies the prescriptions of the Green-Kubo approach to conduc- 
tivity, and, in accordance with the nature of the anomalous diffusion studied 
here, corresponds to a state of increasing conductivity (IC); the second regime 
is characterized by a constant conductivity (CC). The transition from the IC to 
the CC regime takes place in a time of the order of t ~ l/e and consequently the 
transition occurs at longer and longer times, as the perturbation intensity 
decreases. The final stationary regime corresponds to an asymmetric L6vy pro- 
cess of diffusion. 
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1. I N T R O D U C T I O N  

T h e  G r e e ' n - K u b o  m e t h o d  is t he  m o s t  w ide ly  u s e d  a p p r o a c h  to  d e t e r -  

m i n i n g  t h e  c o n d u c t i v i t y  o f  a p h y s i c a l  s y s t e m  f r o m  its m i c r o s c o p i c  d y n a m i -  

cal  p r o p e r t i e s .  T h e s e  r e l a t i o n s  a r e  c lose ly  r e l a t e d  to  l i n e a r  r e s p o n s e  t h e o r y  
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and consequently to the foundations of ordinary statistical mechanics. To 
elucidate the important dynamical properties underlying ordinary statisti- 
cal mechanics and the essentially equivalent Green-Kubo relations, we 
shall examine a model system which maintains the essential aspects of real 
processes and at the same time can be given a simple analytical treatment. 

In the one-dimensional case a process of diffusion for a variable x can 
be described, if a dynamical approach is adopted/1~ by 

~(t)=~(t)  (1.1) 

Here, if x is a space variable, ~ plays the role of a velocity with an erratic 
dependence on time. We assume that ( ~ ) = 0 ,  where the brackets denote 
an ensemble average over the velocity fluctuations. The properties of the 
diffusion process are essentially determined by the stationary correlation 
function 

(~(0) ~(t))~q (1.2) 
~ ( t )  = (~2>eq 

If the stationary process of diffusion is perturbed by the abrupt application 
of a constant perturbation, the response of the diffusing variable, according 
to the general prescription of linear response theory, ~'-I is described by 

d (x(t))=)~ (~(O)~(t'))eqdt' (1.3) 
dt 

where 2 is a suitable constant coefficient determined by the interaction 
between the diffusing system and, the external perturbation. 

The traditional processes of unperturbed diffusion are characterized by 
the property that the time scale defined by 

r = ~r dt' (1.4) 

is finite. This means that for times longer than r the fluctuations of the 
variable x are uncorrelated, the central limit theorem holds, and with it 
ordinary Gaussian diffusion. The effect of a perturbation is straight- 
forwardly predicted by adapting the same arguments as those used to 
derive the standard diffusion process to a system of reference moving with 
the velocity V given by 

V=2(~2)r ~r (1.5) 
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This leads us to predict that after a time of the order of z from the instant 
of abrupt application of the perturbation, the diffusing system reaches a 
new stationary condition given by a distribution function, still Gaussian, 
and translating with the velocity V. 

The major aim of this paper is to discuss the same process of response 
to a perturbation in the case where the correlation function q~r does not 
decay sufficiently fast to guarantee the conditions for ordinary diffusion. It 
has been shown by several authors ~''3 7~ that it is possible to realize a 
dynamical process characterized by an inverse power-law autocorrelation 
function (1.2) with a deterministic prescription, such as either the Geisel 
et  al. map (GNZM) 13~ or the standard map (SM) in the accelerator state/6~ 
The autocorrelation function is then of the form 

lin~:, q~r oct  - / j  (1.6) 

with 

O < f l < l  (1.7) 

It has been shown ~ t, 4~ that the diffusion process corresponding to this con- 
dition is an m-stable L+vy process with index 

~ = f l +  1 (1.8) 

These theoretical results raise the question of what kind of response a 
dynamical system characterized by the properties (1.6) and (1.7) would 
have to a constant perturbation. The problem is of some interest because 
it implies a possible breakdown of the prescription (1.5), which is widely 
used in statistical mechanics to determine the conductivity following the 
application of a perturbation. We shall refer to (1.5) as the Green-Kubo 
(GK) prescription. 

Does the GK prescription hold in the case of an inverse power-law 
autocorrelation function? It is evident that the GK cannot hold true in the 
form (1.5), since this would involve an infinite conductivity. On the other 
hand, the GK prediction might hold true, for short times, in the form (1.3). 
However, the'resulting conductivity would steadily increase with time, until 
eventually it breaks the condition of weak response to the external pertur- 
bation, the condition on which the linear response treatment leading to 
(1.3) rests. It must also be pointed out that the derivation of (1.3) implies 12) 
the assumption that the equilibrium distribution of ~ is Maxwellian. We 
think that the former requirement is naturally fulfilled in the early part of 
the response process, regardless of the long-time behavior of the correlation 
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function q~r The fulfilment of the second one is made impossible by the 
dichotomic nature of the variable velocity in this case. This, however, 
would not prevent us from conveniently using the linear response prescrip- 
tionJ 81 Furthermore, among the different ways of perturbing the diffusing 
system, we shall adopt one that not only fulfills the, spirit of the linear 
response theory, but also coincides formally with (1.3) in the early part of 
the response process. 

The illustration of the process of perturbation needs a preliminary 
illustration of the nature of the dynamical system under study. As earlier 
said, the variable ~ fluctuates between only two values, ~ = 1 and ~ = - 1 .  
In the absence of perturbation, the two states are characterized by the same 
statistical weight and by the same distribution of sojourn times ~(t). The 
relation between qsr and ~O(t) can be established on the basis of renewal 
theory, C3 

l f/,:r qs~(t) = - ~ -  (T- t )  q,(T)dT (1.9) 

which is exact under the assumption that ~ is a dichotomous variable 
taking opposite values. From this relation we immediately see that the form 
of the correlation function given by (1.6) is obtained if the waiting time dis- 
tribution has the following behavior: 

1 
lim ~(t) oc --  (1.10) 

t ~ ~ ,  g l t  

In this specific case it is straightforward to prove that 

f l=It-2 (1.11) 

With the use of numerical calculations it has been assessed ~6"71 that the 
standard map and other Hamiltonian systems in a condition of weak 
chaos, which is a phase space containing nonlinear resonant tori as well as 
a chaotic sea, realize (1.10) with 

2 <It < 3 (1.12) 

This means that we have an c~-stable L~vy process whose parameter ~, 
according to (1.8), fulfills the condition 1 < ~ < 2. 

We now assume that the effect of an external perturbation is that of 
changing the form of the distribution ~(t) of waiting times in the states 

= 1 and ~ = - 1. A bias is realized when the two distributions, which we 
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denote by 0t ( t )  and I// l(t),  respectively, get different forms. A perturba- 
tion of the O(t) affecting the region of short times would result in a trivial 
effect. Of much more significance is the case where one or both of the wait- 
ing-time distributions are perturbed in such a way as to lose the inverse- 
power-law nature. The form of the perturbation is chosen to ensure that 
the early-time region of the response fulfills the condition (1.3). The 
numerical results of an earlier paper ~ show that the system makes a trans- 
ition from this GK regime to a final regime of constant conductivity. 
Herein we deepen our understanding of this final regime with the help of 
analysis to supplement our numerical arguments. 

The outline of the paper is as follows. Section 2 is devoted to illustrat- 
ing the dynamical model used for our numerical calculations. Section 3 
contains a discussion of the conditions for stationary and nonstationary 
distributions Section 4 illustrates the theoretical predictions concerning 
how the shape of the probability distribution changes after switching on 
the perturbation. It is shown that the CC regime consists, in turn, of an 
earlier regime of shape readjustment and of a final, genuinely stationary 
regime corresponding to an asymmetric L~vy process. In Section 5 we make 
a comparison between numerical and theoretical results and approach the 
long-time regime where the theory applies starting from a short-time 
dynamical regime still dependent on the details of the generator of the 
inverse power law adopted. Concluding remarks are made in Section 6. 

2. THE D Y N A M I C A L  S Y S T E M  U N D E R  S T U D Y  

The theoretical predictions of this paper refer to a region of long times 
where the details of the microscopic dynamics are lost and the behavior of 
the system is determined by the inverse power-law behavior (1.10) of the 
waiting time distribution. All the dynamical systems with the same inverse 
power law in the long-time regime are expected to fit these predictions. To 
explore the transition from a model-dependent, short-time regime to a 
long-time regime with a universal behavior, we need to make numerical 
calculations and adopt a specific dynamical model. For this purpose we 
make the simplest possible choice, namely, we consider the one-dimen- 
sional map introduced by Geisel et  al. ~s~ in order to derive anomalous dif- 
fusion that evolves faster than normal. 

Let us consider the unbiased case. Using the property of antisymmetry 
by reflection around x = 0 and the invariance by translation of a unit dis- 
tance, we can express the map in the reduced range 0 ~< x ~< 1/2 as 

x,,+~ = g ( x , , )  (2.1) 
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with 

g(x) = x + a x : -  1, 0 <~x<~ 1/2 (2.2) 

where the constant a is chosen to be a = 2--. 
The reduced map is obtained by iterating separately the motion within 

each unitary cell and the motion between cells. The coordinate x of the 
trajectory is decomposed into its integer part, the box number N, and the 
position y within a box (x,  = iV,, + y,,), and so the reduced map is defined 
as {a) 

y . + t  = o~(y) ,  0 < y < l  

N,,+, =~ . (y . )+N.  
(2.3) 

4(3') is the reduced map for the reduced coordinate y illustrated in Fig. 1 
and oS(y) is used to change the box number N. The left and right branches 
are respectively associated with a decrement and an increment of one unit 
of N, and this completely determines the law oS(y}. In practice, permanence 
in the left (right) laminar region corresponds to the velocity ~=dx/dt  
having the value + 1, - 1 ,  respectively. The motion in regions I and J of 
Fig. 1 has a regular (laminar) character; it is easy to see that points corre- 
sponding to successive iterations are very near one another, so that par- 
ticles remain in the laminar regions for a long time. This property depends 
of course on the fact that the reduced map ~(y) is tangent to the bisectrix 
~ ( y ) = y  in y = 0  and y = l .  The motion in the laminar regions is inter- 
rupted by a chaotic motion in the interval K, which typically lasts for a 
small number of iterations; then the particle is again injected into I or J. 
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Fig. 1. The reduced map  defined by Eq. (2.2), (2.3), with z = 1.8. 
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Neglecting the short time of permanence in the chaotic region K with 
respect to the much longer time of permanence in the laminar regions, we 
have that the dynamics of the map can be described as follows: the particle 
always moves with velocity of modulus one, changing direction at random 
after intervals of time which are typically long, but not fixed and follow a 
distribution ~(t). In practice, we have a system with a dichotomous 
velocity. 

The statistical properties of the motion generated by the map (2.2) are 
determined by the waiting time distribution ~(t) in the laminar regions. 
The functions has an inverse power law behavior for long times and 
reads c4) 

(p -- 1) B t'-t  
q4t)  = (2.4) 

( B + t y '  

where p is related to z in the map (2.2) by 

and 

z 
p = (2.5) 

z--1 

B = P -  1 (2.6) 
2 

We want to study a case of asymmetric diffusion, which means that 
the waiting time distributions ~ ( t )  and qs ~(t) relative to permanence in 
the right and left laminar regions, respectively, are different. The numerical 
experiment of applying the perturbation is made by replacing the deter- 
ministic law of the left laminar region (2.2) with 

x,,+l = (1 + p ) x , , + a x , , - 1  (2.7) 

p is the strength of the perturbation. The corresponding waiting time dis- 
tribution is known and it is given by ~4~ 

2 exp(pt/(p --  1 )) 
~bp(t) = { 1 + ( 2 / p ) [ e x p ( p t / ( p  - 1)) - 1 ] }P (2.8) 

Now, the important properties of the process discussed in this paper 
are not qualitatively altered if, instead of (2.8), we take the waiting time 
distribution of the left laminar region to be of the form 

e - c !  
~ ( t )  = A ~ -  (2.9) 

(B + ty' 
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where B is given by Eq. (2.6) and the constant A~ is chosen to ensure 
normalization of ~ ( t ) .  The correspondence between (2.8) and (2.9) is 
established by taking the parameter e to be of the same order as the 
parameter p. The choice (2.9) for the perturbed waiting time distribution 
has the advantage of considerably simplifying the calculations. 

3. STATIONARITY AND NONSTATIONARITY 

The two continuous-time random walk (CTRW) models introduced 
by Zumofen and Klafter, the velocity model (VM) and jump model ~4~, and 
the master equation theory developed by Treffin et al. c~ all reproduce the 
same situation of enhanced anomalous diffusion; this means that they are 
described by a probability distribution Po(x, t) whose second moment 
(xZ(t ) )  o has the same anomalous dependence on time 

( x 2 ( t ) ) ~ - t  "-H, t > l ,  H > l / 2  (3.1) 

Assuming Ip(t) defined by Eq. (2.4) with 2 <it <3  as the distribution 
of sojourn times in each of the two states of the velocity of the particle, one 
obtains 

2 H = 4  - I t  (3.2) 

In the long-time regime, the probability distribution Po(x, t) of the 
unperturbed case, which has been studied, for example, in ref. 4, coincides 
with a L+vy distribution of index ~ = p - 1. This distribution has long tails 
with an inverse-power-law behavior, producing the anomalous time 
dependence of (xg ( t ) )  o. 

The form of the probability distribution for random walk theories 
depends on whether we take the system in a stationary or nonstationary 
state condition, as pointed out in ref. 9. We have a nonstationary state con- 
dition if the first motion event starts at t = 0, when observation begins; in 
terms of the map generating anomalous diffusion, the initial iteration is 
chosen as an injection step into a laminar phase. For sufficiently long 
times, transitions occur at the constant rate ( t ) ,  defined as the first 
moment of the waiting time distribution ip(t); this is obviously not true for 
short times, where the time homogeneity of the process is lost. 

If our system is in a stationary state, motion events should occur at 
the rate ( t )  at all times. This means that one has to take into account the 
possibility that the first observed motion event could have started some 
time before t = 0, and consequently one has to treat the first motion event 
differently from subsequent events. 
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The main difference between the two approaches lies in the shape of 
the distribution P(x, t): in the stationary case, it has a peak at each of the 
two positions x = _ t ,  corresponding to particles that were moving with 
velocity ~ = +__ 1 at t = 0 and kept the same velocity up to time t. However, 
the exponent H describing the anomalous long-time behavior of (x2( t ) )o  
is the same in the stationary or nonstationary state condition. The different 
models, in their stationary or nonstationary version, basically give an 
equally good description of anomalous diffusion. Nevertheless, the VM in 
its stationary version has a feature which makes it the most satisfactory 
theory: as pointed out in ref. 10, the velocity autocorrelation function of 
the model coincides with the one obtained using renewal theory, namely 
(1.9). 

Let us refer, from now on, to the perturbed case. When considering 
stationary conditions, it is clear that the probability distribution P(x, t) will 
display two nonsymmetric peaks at x = + t. However, as shown in ref. 1, 
the long-time behavior of ( x ( t ) )  is the same as the one corresponding to 
the nonstationary condition. 

In the perturbed case the process has an intrinsic time scale, 1/e. The 
behavior of ( x ( t ) )  radically changes if we consider times t ~ 1/e or times 
t >  1/e. As far as the dependence of ( x ( t ) )  on e and t is concerned, we have 
for the models discussed in ref. 4 

(i) ( x ( t ) )  oc e(xX(t))o oc at 4-~', 1 ,~ t ~ 1/e (3.3) 

(ii) ( x ( t ) )  ~- Ut ~ e~'-2t, t>> 1/e (3.4) 

where U is the dimensionless mean velocity given by 

(t ,>-(r_,> 
u =  (3.5) 

( t l ) + ( t _ l )  

and ( t~ )  and ( t _ ~ )  are the mean sojourn times in the right and left 
laminar regions, respectively. 

The behavior of ( x ( t ) )  has been discussed in detail in ref. 1. In case 
(i), ( x ( t ) ) ,  being proportional to the unperturbed second moment 
(x2( t ) )o ,  follows the GK prescription in its generalized form (1.3). Case (i) 
describes a situation of anomalous transport in which the conductivity 
increases as a function of time, as already pointed out in Section 1. Thus, 
the GK prescription cannot be valid at all times, since this would imply a 
diverging conductivity. In fact, the system slowly moves from this condition 
into regime (ii), which is described by a time-independent conductivity. 

Note that all the theoretical models mentioned earlier result in the 
properties described by (3.3) and (3.4). The VM in its stationary version is 
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an exception: it reproduces only the long-time regime (ii) of the process, 
namely 

( x ( t ) )  = Ut (3.6) 

for all values of t. Thus, it displays the same behavior both at times longer 
or shorter than the characteristic perturbation time 1/e. This is so because 
the system is always in a state of equilibrium, and (3.6) is exactly what one 
would expect from a system in a stationary state. This confirms that the 
VM is the most reliable stationary model in the sense noted earlier. 

4. SHAPE OF THE DISTRIBUTION 

In this section we focus our attention on the probability distribution 
P(x, t) of the diffusing variable x of the dynamical system under study. It 
is important to remark that to leading order the theoretical expression for 
P(x, t) does not depend on which among the models quoted in Section 3 
we consider. However, we refer our calculations to only one of them, the 
VM, assumed to be in the nonstationary condition (nonstationary in the 
sense illustrated in Section 3). The inverse Fourier-Laplace transform of its 
probability distribution reads 141 

13(k,s)= ~P(k,s) (4.l) 
1 - ~(k, s )  

where ~(k, s) is the Fourier-Laplace transform of ~,(x, t), defined as the 
probability distribution for moving a distance x in time t in a single motion 
event, 

$(x, t )= �89  t) $~(t) + �89 + t) ~_  K(t) (4.2) 

~'(k, s) is the Fourier-Laplace transform of ~U(x, t), defined as the prob- 
ability to pass to location x at time t in a single motion event, 

~t car~�84 ft 'zC 7~(x, t )=�89 dt'~bl(t')+�89 dt'~b_,(t') (4.3) 

and q;l(t) and O_~(t) are the waiting time distributions in the right and left 
laminar regions and are defined by Eqs. (2.4) and (2.9), respectively. So, 
P( x, t) reads 

I~' + ~ U dk 
P(x, t) = - ix &' e"' j_  ~ 2--~ e-ik"lfi(k, S) (4.4) 
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with P(k, s) given by Eq. (4.1). It is meaningful to study P(x, t) for long 
times, because it is only in this limit that one can find physical features 
independent of the details of the model studied but pertaining to all the 
models generating the same inverse power law for ~O(t). This implies we 
have to consider P(k, s) for small values of the Laplace variable s, I~" ~-'~ 
and of course in the limit of small perturbation intensity e. 

The Fourier-Laplace inversion of Eq. (4.1) cannot in general be 
carried out analytically. However, for small values of s and e, one can use 
a simplified expression for P(k, s), derived in an analogous way as that 
leading to the L~vy form of the probability distribution in the unperturbed 
case.14, ii. t_,l In particular, in the Appendix we show that, for times corre- 
sponding to the IC and CC regimes introduced in Section 3, the integrand 
of (4.4) can be approximated by an expression of the form 

1 
P(k, s) - - -  (4.5) 

s - K ( k )  

with K(k) a particular function of k. This makes the Laplace inversion 
trivial, so that by inserting (4.5) into (4.4) we get 

fc~ d k  e_ikxeK(k) t F ~ d k  --ikx-- p(x, t) _~ _ ~ ~ = J _ ~  ~ e " P(k, t) (4.6) 

Let us first treat the intermediate IC regime, whose transport proper- 
ties are described by Eq. (3.4). We are considering times t >> 1 but such that 
et ,~ 1. In practice, the results relative to this regime are obtained by 
expanding to first order in e the factor e -~' in the perturbed waiting time 
distribution ~k,(t), (2.9). As shown in the Appendix, such a first-order 
expansion leads to the following expression for K(k): 

K ( k )  = - - -  
2 ( t )  

[ ( - i k )  I'-I +(ik) ~'-I + ( p -  1) e(ik) ~'-2] (4.7) 

where ( t )  is the first moment of ~(t), 

i :  B (4.8) ( t ) =  tO(t) dt I t - 2  

and c is defined by 

c= B~ ' - 'F(2-p)  (4.9) 

In the limit of large [x[, the Fourier inversion of/3(k, t) = e KIk~' can be 
carried out analytically, with the technique illustrated in ref. 11. The resulting 

822/84/5-6-12 
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expression, which is in the form of an asymptotic power series, includes 
terms that are symmetric for x ~ - x  and therefore do not contribute to 
( x ( t ) ) ,  and odd terms in which we are particularly interested, since we are 
examining the properties of transport. The leading symmetric term is 

t 
P ( x ,  t ) s ~ . . "  q [xlt ,, Ixl ~ t I / ( ' - ] ~  (4.10) 

while the leading nonsymmetric term, which is present only for x < 0, is 

el 
P(x,t).sym~--qlxl~,_ I, Ix[>>t 'm'-'', x < O  (4.11) 

where q is defined by 

c F(Ix) sin(n/t) 
q =  - 2 ( t )  ~ (4.12) 

We thus see that in this part of the process the perturbation has the effect 
of lowering the left tail of P ( x ,  t), subtracting (4.11) from its unperturbed 
value [see Eq. (4.23)]. Let us see how this leads to a ( x ( t ) )  which has the 
t and e dependence predicted by (3.3). Supposing that the expression for 
P(x ,  t) given by (4.10), (4.11 ) is valid for every x < t [since the 6-function 
condition in the expression for ~b(x, t) implies that P ( x  > t, t ) =  0], we can 
calculate an approximate value of ( x ( t ) )  

it f0 X ( x ( t ) )  ~- x P ( x ,  t) d x  ~- - q e t  d x  oc et 4-~', 
- - ,  - ,  I x l " - '  

t ~ l/e (4.13) 

which coincides with (3.3). We thus see that, for times smaller than the 
characteristic time of the perturbation, the asymmetry of the tails produces 
the anomalous dependence on time of ( x ( t ) ) .  

Let us now study P ( x ,  t) for times t~> l/e, when the properties of 
transport are described by Eq. (3.4) of Section 3. As shown in the 
Appendix in this case Eq. (4.1) can again be approximated by an expres- 
sion of the form (4.5), with K ( k )  given by 

r 
K ( k )  _ 

2(t) 
- -  [ ( - i k y ' - '  + ( e  + ik) ' ' - I  - e  " - 1  ] (4.14) 

which for large times can be further simplified as 

K( k ) "~ _ ik ,lX - l , C ej, _ ~__ _ __c ( _ ik  )l, _ I (4.15) 
2 ( t )  2 ( t )  
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In this last case, the characteristic function P(k, t ) = e  KIk~' is thus of the 
form 

P(k, t) ~- exp{ i kUt  -- b Ikl~t[ 1 + igco(oO sgn(k)] } (4.16) 

where 

o~ = I t -  1 (4.17) 

m(~) -= tg ( ? )  (4.18) 

g =  - l  (4.19) 

b = 2 - ~  cos (4.20) 

and 

c 
U =  - - - ( I t -  1) e ~'-2 (4.21) 

2(t) 

Notice that U is the mean velocity appearing in Eqs. (3.4) and (3.5), 
calculated to the lowest order in e. Now, Eq. (4.16) with o9(~)= tg(no~/2) 

and the generic real parameters U,b>~0, and - 1  ~<g~< 1 is the most 
general form of a L6vy stable distribution/TM The parameter U represents 
the velocity of translation of the distribution; b is a scale factor which could 
be reabsorbed by a dilation of x. The parameter g is related to the degree 
of asymmetry of P(x ,  t); it is easy to see that for g = 0, P(x ,  t) is symmetric, 
while for g = _+ l, P ( x ,  t) reaches the maximum possible asymmetry, ct is the 
index of the L~vy distribution and determines its large-Ix I behavior. We 
thus see that, in the long-time regime t>> l/e, the process under study 
reduces to the stationary asymmetric L6vy process (4.16). 

Let us remark that the characteristic function Po(k, t) relative to the 
unperturbed case is given by (4.16) with U = 0, g = 0, and a value of b twice 
that of Eq. (4.20). Notice that the large-Ix I behavior of the unperturbed 
distribution is 

t 
Po(x,  t) ~- q ixl~ ,, Ixl >> t im` - '~ (4.22) 

with q still given by (4.12). 
Both, the probability distributions relative to the unperturbed case 

and the perturbed case in the long-time stationary regime are e-stable L~vy 
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distributions, and so exhibit the characteristic scaling property (with U =  0 
for the unperturbed case) 

1 / x -  Ut\  
P ( x , t ) = t ~ F ( ~ )  

which is equivalent to the condition for the characteristic function 

P(k, t) = eikV'P(kt 'O'- l~) 

(4.23) 

(4.24) 

Let us also notice that the characteristic function/~(k, t) of the inter- 
mediate nonstationary regime, relative to times 1 ~ t ~ l/e, does not have 
the scaling property (4.23). 

The transport property (x( t ) )  has contributions from both the drift 
term, namely the velocity U of the distribution, and the asymmetric tail of 
the distribution. It is easy to see that in the long-time region the leading 
contribution is the one that comes from the drift 

( x ( t ) )  drin = Ut (4.25) 

which coincides in fact with Eq. (3.4). 
Let us see what changes in this description if we consider the VM in the 

stationary condition; we recall that the model has the interesting feature of 
describing only the steady-state condition (x( t ) )  ~- Ut, as an acceptable 
stationary model should do. The probability distribution of the stationary 
VM reads, generalizing the treatment of ref. 9 to the case with perturbation, 

p ( x , t ) = L _ l F _ l (  2 [ ~ ( k , s ) ]  2) _. ------=---- ~ +/4(x,  t) 
( t , ) + ( t _ , )  1 - $(k, s ) )  

=- R(x, t) + H(x, t) (4.26) 

where L - I F  -I indicates inverse Fourier-Laplace inversion; ( t l )  and 
( t _ l )  are the first moments of $(t) and $,(t), respectively; ~(k, s), ~'(k, s) 
are the Fourier-Laplace transforms of Eqs. (4.2), (4.3); H(x, t) is the prob- 
ability to pass location x at time t during the first motion event, and has 
the expression 

1 
H(x, t)= 

( t l ) + ( t _ l )  

x[~(x-t) ff dt ' ( t ' - t )~b( t )+J(x+t)  d t ' ( t ' - t )  d/~(t) 

(4.27) 
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In the limit of long times, the term R(x ,  t) has the same qualitative 
behavior as the complete probability distribution P(x,  t) of the nonstation- 
ary VM [it is easy to verify this using the limiting expressions for ~(k, s), 
~V(k, s) given in the Appendix]. 

The term H(x ,  t) contributes only for x = _+ t and it is responsible for 
the two asymmetric peaks, which to leading order behave as 

x = , :  2 - "  
- 2 \ B J  (4.28) 

, 1 
x = - t: H(x ,  t) - 2 \ B J  - U, t 4-e (4.29) 

e - "  1 
H(x ,  t) "~ t>>- (4.30) 

et t, - 1 C, 

It is the interplay of R(x ,  t) [the central region of P(x,  t)] and H(x ,  t) (the 
peaks) that produces the peculiar features of the stationary VM described 
in Section 3. What happens is that the contribution of R(x ,  t) to ( x ( t ) )  
cancels with part of the contribution of H(x ,  t). The remaining part of the 
contribution of the asymmetry of the peaks is exactly ( x ( t ) )  = Ut. 

We have seen that perturbation (2.9) induces a transition from the 
unperturbed a-stable L6vy process to another L~vy process of the same 
index ~, with maximum asymmetry. The L~vy property remains, even if the 
scale has been introduced. Let us consider, however, a perturbation defined 
in the following way: 

e --err 

~b,(t) = A~, ( B + t ) "  (4.31) 

e - g l t  

~b_,(t) =A, ,  ( B +  t)" (4.32) 

where the constants A~, and A,~ are chosen to ensure normalization. 
It is easy to verify, following the derivation carried out in ref. 1, that 

the response ( x ( t ) )  has an analogous behavior to that relative to pertur- 
bation (2.9). Taking et, e,. to be of the same order, we can distinguish two 
time regimes: 

( x ( t ) )  o c ( e t - - e , . ) ( x 2 ( t ) ) o O C ( e / - - e r ) t  4-I', t ~ I / e  t, t ~ l / e r  (4.33) 

where the response also follows the Green-Kubo relation (1.3), and 

( x ( t ) ) ~ - O t o c ( # / - 2 - e ~ - 2 ) t ,  t~>l/el,  t~>l/er (4.34) 
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which is the stationary regime of constant conductivity U. 0 is given by the 
general equation (3.5), with ( t , ) ,  and ( t  , )  the first moments of qJ,(t) 
and ~b ~(t) defined by Eqs. (4.31) and (4.32), respectively. 

The fact that in this case the power-law tails of, both ~,,(t) and ~k_~(t) 
are cut by an exponential factor at large times implies that the stationary 
distribution P(x, t) has a completely different behavior from the L6vy 
asymmetric one we discussed before. As shown in the Appendix, at times 
t>> 1/e~, t >> l/e,., the Fourier-Laplace transform of P(x, t) has the form 
(4.5), with K(k) given by 

K(k) ".. - i k  ( g t _ _ -  1) c (e~,_ 2 _ e~_2)+ k2 (/~- 1 ) ( i t -2 )  c (e~,_ 3 + e~_3) 
2 ( t )  4 ( t )  

(4.35) 

The characteristic function/3(k, t ) =  e h'~k~' is thus the inverse Fourier trans- 
form of the Gaussian distribution 

(' 1._El ',-~ [ (.,,,'_- ~t)21 
P(x, t) ~ \4~DtJ  exp 4/)t J (4.36) 

with 

U= ( l t - 1 ) c  t ' t ' -2 -~g ' -2~  (4.37) 
2 ( t )  ,~/ ~ , 

E) = ( I t -  1)(tt - 2 )  c (e},_ 3 + et!_ 3) (4.38) 
4(t) 

Notice that the diffusion coefficient/3 diverges as e /and e,. go to zero. This 
evidently depends on the fact that in the unperturbed case diffusion was 
anomalous, due to the inverse-power-law behavior of ~b(t). 

5. STAT IST ICAL  N A T U R E  OF THE IC A N D  CC R E G I M E S  

This section illustrates the nature of the IC and CC regimes with the 
help of a numerical treatment of the Geisel map and the numerical Fourier 
inversion of the theoretical expressions for/~(k, t) given in Section 4. 

Figure 2 shows the time evolution of ( x ( t ) )  obtained by a numerical 
treatment of the perturbed Geisel map defined in Sec. 2, with a value of 
it--2.25 and a perturbation parameter e = 0.005. The purpose of the figure 
is to illustrate the transition from the IC to the CC regime, theoretically 
described by Eqs. (3.3) and (3.4), respectively. The numerical data are 
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Fig. 2. Evolution of ( x ( t ) )  up to times t = 20,000. The solid line is the result of numerical 
calculations obtained by the direct realization of the perturbed Geisel map. The dashed lines 
represent the theoretical prediction of the VM: the long-dashed line is obtained from Eq. (5.1) 
calculated at times 1 ,~ t ,~ l/e; the short-dashed line is obtained from Eq. (5.1) calculated at 
times t~> 1/e. The values used for/z, e are ,u =2.25 and e =0.005. 

compared with the theoretical prediction of the VM in its nonstationary 
condition, namely, with 

(x(t)) =L-' { - i [  apCk's) (5.1) 

where P(k,s) is given by Eq. (4.1). With the help of a log-log plot it is 
clearly shown that the numerical treatment and the theory agree with one 
another, and show an evident change of regime at times of the order of 1/e. 

In Fig. 3,'for the same parameters Ft = 2.25 and e = 0.005 as Fig. 2, we 
illustrate the corresponding change in the shape of the distribution. The 
numerical results are shown only up to the transition time l/e, because 
after this time they become increasingly inaccurate. We note that the 
numerical results are obtained by applying abruptly the perturbation to the 
system at time t = 0. At this time, the system is set into a state correspond- 
ing to the stationary unperturbed distribution of the velocity. This special 
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Fig. 3. Evolution of P ( x , t )  at times (a) t=50, (b) t=200, (c) t =  1000, (d) t =  10,000, 
(e) t=20,000. The dots show the results of numerical calculations obtained by the direct 
realization of the perturbed Geisel map; the solid lines are the results of the numerical inverse 
Fourier transformation using kernel (4.7) for (a) and (4.14) for (b)-(e). The dashed lines of 
(c)-(e) are the results of the numerical inverse Fourier transformation of (4.16). The values 
used Ibr/t, e are/t = 2.25 and e = 0.005. 

condi t ion  has the effect of  y ie lding the d i s t r ibu t ion  peaks  at the pos i t ions  
x = _+ t. These peaks  have the same or igin as those discussed at  the end of  
the preceding  section, which are also widely discussed by Klaf te r  and  
Zumofen.  (9) F o r  the sake of  s impl ic i ty  the theoret ica l  p red ic t ion  was 
ob ta ined  by adop t ing  an init ial  cond i t ion  co r r e spond ing  to the nons ta t ion -  
a ry  cond i t ion  with pe r tu rba t ion ,  descr ibed  in Sec. 3. It is poss ible  to prove,  
however ,  that  the choice of  init ial  cond i t ions  ident ical  to tha t  of  the 
numer ica l  exper iment  would  not  affect the d i s t r ibu t ion  between the two 
peaks.  Consequent ly ,  the m a r k e d  d i sc repancy  between theory  and  numer i -  
cal exper iment  in Fig. 3a mus t  be due to different reasons.  P r o b a b l y  this is 
in par t  due to the fact tha t  the theore t ica l  p red ic t ion  refers to long times, 
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and therefore is totally independent of the nature of the generator of the 
inverse-power-law adopted, whereas the numerical experiment in the short- 
time region is still influenced by the details of this generator. 

The wide region t ,> 1/e is illustrated only making use of the Fourier 
transform of/~(k, t )=  e K(klt  with K(k) given by Eqs. (4.14) and (4.15), and 
serves very well the purpose of illustrating the transition from the regime 
of reshaping of the distribution to that of the asymmetric L6vy process. 

6. C O N C L U D I N G  R E M A R K S  

We summarize the most significant results of this paper: 

(i) The effect of an abrupt perturbation of a process of anomalous 
diffusion is that of creating a long-time regime of transition to a new 
stationary regime. The time duration of this process is not independent of 
the intensity of the perturbation, as in the case of normal diffusion. Rather, 
the smaller is the perturbation intensity, the longer is the time duration of 
the transition regime. The breakdown of the linear response regime, the 
GK regime, is closely related to the fact that the process of readjustment 
of the variable velocity does not have a finite time scale. Consequently, the 
time scale for the process of x-redistribution depends on the time scale at 
which the inverse-power-law distribution of waiting times is truncated. This 
means that in the long-time regime the response depends on the properties 
of the perturbed waiting time distributions ~ ( t )  and ~k_ l(t) rather than on 
the unperturbed correlation function ~e(t) as in the conventional linear 
response treatment. In other words, the transition to the final stationary 
regime cannot be described by a linear response treatment. The transition 
from the initial symmetric L~vy process to the final asymmetric L~vy pro- 
cess implies a breakdown of the conventional predictions of ordinary 
statistical mechanics. 

(ii) The statistical nature of the new stationary regime depends on 
whether or not both waiting time distributions are truncated at a given 
time of the order of 1/e. In the former case the new waiting time distribu- 
tion would be Gaussian. More interesting is the case analyzed in this 
paper, corresponding to truncating only one of the two waiting time dis- 
tributions. The new stationary process turns out to be an asymmetric L6vy 
process. This result is in line with the well-known fact that the L6vy pro- 
cesses are stable, as are the Gaussian ones. 

(iii) When both waiting time distributions are truncated and an 
asymmetric L6vy process is generated, the process of transport in one 
direction also depends on the dynamics of the tails of the distribution. This 
is reminiscent of results found several years ago by other authors. It4''sl 
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However, in addition to being devoted to a case of superdiffusion, rather 
than subdiffusion as in refs. 14 and 15, our treatment rests on a specific 
dynamic derivation and establishes a comparison with the conventional 
Green-Kubo regime. 

A P P E N D I X  

We recall that the distribution of waiting times in the two states of the 
velocity ( =  _+ 1 in the unperturbed case is 

(/t-- 1) B ~'-I 
~h(t)- (h . l )  

( B + t )  j' 

with B a parameter given by (2.6) and 2 <i t  < 3. 
Let us first consider the case of perturbation (2.9), which is applied by 

modifying the waiting-time distribution in the state ~ = - 1 of the velocity 
and is defined by 

~ ( t )  = ~b(t) (A.2) 

e~'qJ( t ) 
~b_ ~(t) = - -  (A.3) ~b(~) 

where ~b(t) is given by (A.1) and the function ~ denotes the Laplace trans- 
form of ~,(t). In the following, the Fourier-Laplace transform of a function 

f ( x ,  t) will be indicated by .f(k, s). Let us now consider the quantities 
~(k, s) and ~(k, s), which are necessary to compute the probability dis- 
tribution P(x ,  t): 

f ,,+i .... s, f"  dk  ik~- ~P(k,s) 
P ( x , t ) =  dse j - - e  " (A.4) 

. - i  . . . . .  2~  1 - ( O ( k , s )  

From the definitions of if(x, t) and ~(x, t) in Eqs. (4.2), (4.3) it 
follows that, for this choice of the perturbation, 

1 ~ 1 ( k ( s + i k + e )  
( O ( k , s ) = - ~ ( s - i k ) - F  2 ~(e) (A.5) 
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and 

q'(k,s)=-I 1 [1-~(s- ik)]  
2 s - i k  

1 1 I (b(s+ik+e)] (A.6) 

so that everything is formally expressed in terms of the Laplace transform 
of ~(t). 

We are interested in evaluating P(x,  t) for large times and small per- 
turbation intensities. So, expressions (A.5) and (A.6) are to be substituted 
into Eq. (A.4) and have to be evaluated in the limit of small s, e. The leading 
contribution to the integral (4.4) comes from the region of small k's, 
because the denominator 1 - ~ ( k ,  s) goes to zero when s, k, e ~ 0, so that 
we have to consider ~ in equals (4.1) for small values of the complex 
arguments s - ik, s + ik + e. 

The first terms of the small-s expansion of ~(s) are, for 2 <Fl < 3, 

r --- 1 -- ( t )  --cs ~ (A.7) 

where ( t )  and c are defined in Eqs. (4.8) and (4.9) respectively, and ~ is 
defined by 

=I~ - 1 (A.8) 

Using the fact that the complex arguments of ~(q) in Eqs. (A.5) and (A.6) 
have positive real part, we can extend the expansion (A.7) to q = s - i k ,  
q = s + i k + e .  

The numerator ~P(k,s) in Eq. (A,4) has a finite value at e = s = k = O ,  
so that it can be approximated, to lowest order, by 

~'(k, s) ~ ( t )  (A.9) 

The expfession for ~(k, s) corresponding to the IC case is obtained 
expanding (A.5) to first order in e, which amounts to expanding the factor 
exp(-e t )  in the perturbed waiting time distribution qs~(t) to first order in 
et. Moreover, we consider the expression for ~(k, s) in the range s ~k .  As 
discussed in refs, 11 and 12, this is a reasonable approximation in most of 
the ( s , k )  domain. Anyway, one should remember that the expression 
obtained cannot be directly used in the calculation of quantities like ( x ( t ) )  
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and (X2(t)), which require a knowledge of the derivatives of P(k, s) for 
k = 0. The result is: 

c 
r l - ( t )  s - } [ ( - i k ) ~ + ( i k ) ~ + ~ ( i k )  ~- '  ] (A.10) 

Notice that Eq. (A.10) evaluated at e = 0  is identical to the approximate 
expression (14) of ref. 12 for the unperturbed ~(k, s). 

The expression for ~(k, s) corresponding to the CC case is obtained 
expanding (A.5) for s ~ e ,  which amounts to considering the factor 
exp(-e t )  in the perturbed waiting time distribution r for large values 
of et: 

r ~ 1 - (  t> s - 2  [ ( - i k ) ~  + (e + ik)=-e~ ] (A.11) 

It is the very small values of k, k ~ e, that give the dominant contribution 
to the integral (A.4). Approximating (A.1 l) for k ,~ e, we obtain the expres- 
sion for ~(k, s) corresponding to the stationary L6vy asymmetric regime 

~ce~-~(ik) ~(k,s)  ~- 1 - ( t )  s - 2  ( - i k ) ~ - -  ~ (A.12) 

Substituting Eqs. (A.9)-(A. 12) into (4.1), it is straightforward to verify that 
the resulting expressions for P(k, s) always have the form (4.5), with K(k) 
given by Eqs. (4.7), (4.14), and (4.15) of the text. 

Let us now consider the case of the perturbation defined by 
Eqs. (4.31), (4.32), which is applied by modifying the waiting time distribu- 
tions in both states ~ -- + 1 and ~ = - 1 of the velocity in a way analogous 
to (2.9): 

e-~'qJ(t) 
r (A.13) 

e -~1r 
~_~(t) (A.14) 

q)Ie,) 

Let us consider the quantities ~(k, s) and ~(k, s), which in this case 
have the formal expressions in terms of the Laplace transform ~ of the 
unperturbed waiting time distribution r 

r s) = 1 ~(s - ik + e,.) 1 r + ik + e;) (A.15) 
2 ~(e,.) 2 ~(e,) 
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~(k 's)  l 1 [2s- -Tk 1 (O(s-ik+er)]_: 
- -  ~ J ( E r )  

1 1 (b(s+ik+et)] 
+ 2 ~ [  1 -~(e,i 3 (A.16) 

With the same kinds of approximations used in the case of perturba- 
tion (A.2), (A.3) we derive, to lowest significant order, 

~(k, s) -~ ( t )  (A.17) 

for both the IC and CC regimes. The expression for ~(k, s) is 

c 
~(k, s) ~- 1 - ( t )  s - ~  [ ( - ik)=+(ik)~+ct(e t -er ) ( ik)  =-' ] (A.18) 

in the IC case, and 

c ( k ( k , s )~ - l - ( t ) s - -~[ ( e r - i k )=-e~+(e l+ ik )=-eT]  (A.19) 

in the CC case. For k ~ c this last relation becomes 

=- -2  = - -2  2 ~ ( k , s ) - ~ l - ( t ) s + ( / t  1) ( / t -2)c(e  I +e  r )k 
4 

0re 
2 (e~- i _ e~- l)(ik) (A.20) 

Substituting Eqs. (A.17) and (A.20) into (4.1), one finds that the resulting 
expression for P(k, s) has the form (4.5), with K(k) given by Eq. (4.35) of 
the text. 
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